Search results for "STRIPAK members"

showing 1 items of 1 documents

STRIPAK Members Orchestrate Hippo and Insulin Receptor Signaling to Promote Neural Stem Cell Reactivation

2019

Summary Adult stem cells reactivate from quiescence to maintain tissue homeostasis and in response to injury. How the underlying regulatory signals are integrated is largely unknown. Drosophila neural stem cells (NSCs) also leave quiescence to generate adult neurons and glia, a process that is dependent on Hippo signaling inhibition and activation of the insulin-like receptor (InR)/PI3K/Akt cascade. We performed a transcriptome analysis of individual quiescent and reactivating NSCs harvested directly from Drosophila brains and identified the conserved STRIPAK complex members mob4, cka, and PP2A (microtubule star, mts). We show that PP2A/Mts phosphatase, with its regulatory subunit Widerbors…

0301 basic medicinereactivationendocrine systemMitosisNerve Tissue ProteinsProtein Serine-Threonine KinasesBiologyArticleGeneral Biochemistry Genetics and Molecular BiologyAnimals Genetically ModifiedPhosphatidylinositol 3-Kinases03 medical and health sciences0302 clinical medicineNeural Stem CellsAnimalsDrosophila ProteinsquiescenceProtein Phosphatase 2lcsh:QH301-705.5Protein kinase BCells CulturedPI3K/AKT/mTOR pathwayTissue homeostasisAdaptor Proteins Signal TransducingCell ProliferationHippo signaling pathwayGene Expression ProfilingHippo signalingInR/PI3K/Akt signalingfungiIntracellular Signaling Peptides and ProteinsBrainSTRIPAK membersProtein phosphatase 2Receptor InsulinNeural stem cellCell biologyDrosophila melanogaster030104 developmental biologylcsh:Biology (General)nervous systemHippo signalingSingle-Cell AnalysisTranscriptomeProto-Oncogene Proteins c-akt030217 neurology & neurosurgeryAdult stem cellCell Reports
researchProduct